loading
 
 
 

正在访问外部站点

您正在试图退出医默相通,访问外部站点

对任何包含在第三方网站中的信息的准确性,完整性,可靠性或实用性,默沙东不作任何形式的担保,并对于因您使用这些内容而产生的任何形式的损失或损坏,不承担任何责任。任何第三方站点的链接并不意味着默沙东的认可或推荐。

 

同意

取消

TOFscan和TOF-Watch SX在神经肌肉功能恢复过程中的比较

《 摘 要 》

 
 

背景:要确保在气管拔管时神经肌肉功能已完全恢复,需要定量神经肌肉监测。TOFscan(Drager Technologies,加拿大)是一种新型三维加速度法设备,可测量拇指在多个平面上的移动。本项观察性研究旨在评估肌松恢复期间使用TOF-Watch SX(Organon,爱尔兰)获得的非标准化和标准化的四个成串刺激值与使用TOFscan获得的这些值之间的一致性。

方法:对25例患者给予罗库溴铵,并允许发生肌松的自发恢复。TOFscan和TOF-Watch SX设备应用于相对的两臂。对TOF-Watch SX实施预负荷,并在罗库溴铵给药之前进行定标。两设备都被激活,并且每15秒获得TOF值。进行改良Bland-Altman分析以比较用TOFscan与用TOF-Watch SX测量得到的TOF比值(当达到TOF阈值0.2~1.0时)。

结果:非标准化TOF比值在0.2~1.0之间时,TOF-Watch SX与TOFscan之间一致性的偏差和95%范围分别为0.021和–0.100至0.141。当对TOF-Watch SX的TOF测量值标准化,比值在0.2~1.0之间时,TOF-Watch SX与TOFscan之间一致性的偏差和95%范围分别为0.015和–0.097至0.126。

结论:在神经肌肉恢复的所有阶段,观察到应用定标和预负荷的TOF-Watch SX与未定标TOFscan之间的良好一致性。 (ANESTHESIOLOGY 2018; 129:880-8)

编辑的观点

 
 
 
 

关于这个主题我们已了解的

使用定量方法监测神经肌肉功能恢复可改善患者预后

然而,定量监测的应用并不常见,部分原因是当前的设备很复杂,而且应用非常耗时

本文告诉我们的新内容

已经开发了使用三维加速度法技术的新一代定量监测设备TOFscan(Drager Technologies,加拿大),术中使用时需要的设置较少

TOFscan测量神经肌肉功能的恢复,与现有设备TOF-Watch SX(Organon,爱尔兰)有良好一致性,而后者需要预负荷应用、定标和标准化

显示TOF-Watch SX(Organon,爱尔兰),其中电极放置在尺神经上,并且手部适配器(Organon)连接到拇指上;加速度传感器连接到手部适配器的远端部分-MSDP医默相通

图1. 显示TOF-Watch SX(Organon,爱尔兰),其中电极放置在尺神经上,并且手部适配器(Organon)连接到拇指上;加速度传感器连接到手部适配器的远端部分。

显示TOFscan(Drager Technologies,加拿大),其中电极放置在尺神经上,并且手部适配器连接到拇指上。三维压电传感器封装在手部适配器的加厚远端部分内-MSDP医默相通

图2. 显示TOFscan(Drager Technologies,加拿大),其中电极放置在尺神经上,并且手部适配器连接到拇指上。三维压电传感器封装在手部适配器的加厚远端部分内。

用TOF-Watch SX(Organon,爱尔兰)和TOFscan(Drager Technologies,加拿大)测定的TOF终点-MSDP医默相通

表1. 用TOF-Watch SX(Organon,爱尔兰)和TOFscan(Drager Technologies,加拿大)测定的TOF终点

在肌松恢复过程中,在测量范围内,非标准化和标准化TOF-Watch SX(Organon,爱尔兰)与TOFscan(Drager Technologies,加拿大)之间测量一致性的偏差和范围-MSDP医默相通

表2. 在肌松恢复过程中,在测量范围内,非标准化和标准化TOF-Watch SX(Organon,爱尔兰)与TOFscan(Drager Technologies,加拿大)之间测量一致性的偏差和范围

 在肌松恢复过程中,在测量范围内,非标准化和标准化TOF-Watch SX(Organon,爱尔兰)与TOFscan(Drager Technologies,加拿大)之间测量一致性的偏差和范围的改良真值变化分析评估-MSDP医默相通

表3. 在肌松恢复过程中,在测量范围内,非标准化和标准化TOF-Watch SX(Organon,爱尔兰)与TOFscan(Drager Technologies,加拿大)之间测量一致性的偏差和范围的改良真值变化分析评估

Bland-Altman图显示了高达9倍测量范围内,23例患者中非标准化TOF-Watch SX(Organon,爱尔兰)测量结果与TOFscan(Drager Technologies,加拿大)测量结果之间的偏差(深绿色)及其95%CI(浅绿色),以及一致性的95%上限和下限(分别为ULoA和LLoA,深红色)及其95%CI(浅红色)。绘制患者数据,其中患者编号紧邻表示该患者每个测量值的闭合圆-MSDP医默相通

图3. Bland-Altman图显示了高达9倍测量范围内,23例患者中非标准化TOF-Watch SX(Organon,爱尔兰)测量结果与TOFscan(Drager Technologies,加拿大)测量结果之间的偏差(深绿色)及其95%CI(浅绿色),以及一致性的95%上限和下限(分别为ULoA和LLoA,深红色)及其95%CI(浅红色)。绘制患者数据,其中患者编号紧邻表示该患者每个测量值的闭合圆。

Bland-Altman图显示了高达9倍测量范围内,23例患者中标准化TOF-Watch SX(Organon,爱尔兰)测量结果与TOFscan(Drager Technologies,加拿大)测量结果之间的偏差(深绿色)及其95%CI(浅绿色),以及一致性的95%上限和下限(分别为ULoA和LLoA,深红色)及其95%CI(浅红色)。绘制患者数据,其中患者编号紧邻表示该患者每个测量值的闭合圆-MSDP医默相通

图4. Bland-Altman图显示了高达9倍测量范围内,23例患者中标准化TOF-Watch SX(Organon,爱尔兰)测量结果与TOFscan(Drager Technologies,加拿大)测量结果之间的偏差(深绿色)及其95%CI(浅绿色),以及一致性的95%上限和下限(分别为ULoA和LLoA,深红色)及其95%CI(浅红色)。绘制患者数据,其中患者编号紧邻表示该患者每个测量值的闭合圆。

本文根据Murphy G S, Szokol J W, Avram M J, et al. Comparison of the TOFscan and the TOF-Watch SX during Recovery of Neuromuscular Function[J]. Anesthesiology: The Journal of the American Society of Anesthesiologists, 2018, 129(5): 880-888.整理

 

参考文献(您可以下拉查询更多文献列表信息)

1.Brull SJ, Murphy GS: Residual neuromuscular block: Lessons unlearned. Part II: Methods to reduce the risk of residual weakness. Anesth Analg 2010; 111:129-40

2.Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear T, Vender JS, Gray J, Landry E: Postoperative residual neuromuscular blockade is associated with impaired clinical recovery. Anesth Analg 2013; 117:133-41

3.Eikermann M, Groeben H, Hüsing J, Peters J: Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology 2003; 98:1333-7

4.Heier T, Caldwell JE, Feiner JR, Liu L, Ward T, Wright PM: Relationship between normalized adductor pollicis train- of-four ratio and manifestations of residual neuromuscular block: A study using acceleromyography during near steady- state concentrations of mivacurium. Anesthesiology 2010; 113:825-32

5.Viby-Mogensen J, Jensen NH, Engbaek J, Ording H, Skovgaard LT, Chraemmer-Jørgensen B: Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology 1985; 63:440-3

6.Brull SJ, Silverman DG: Visual and tactile assessment of neuromuscular fade. Anesth Analg 1993; 77:352-5

7.Naguib M, Brull SJ, Kopman AF, Hunter JM, Fülesdi B, Arkes HR, Elstein A, Todd MM, Johnson KB: Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg 2018; 127:71-80

8.Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ: A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg 2010; 111:110-9

9.Phillips S, Stewart PA, Bilgin AB: A survey of the management of neuromuscular blockade monitoring in Australia and New Zealand. Anaesth Intensive Care 2013; 41:374-9

10.Claudius C, Skovgaard LT, Viby-Mogensen J: Acceleromyography and mechanomyography for establishing potency of neuromuscular blocking agents: A randomized- controlled trial. Acta Anaesthesiol Scand 2009; 53:449-54

11.Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J; 8th International Neuromuscular Meeting: Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: The Stockholm revision. Acta Anaesthesiol Scand 2007; 51:789-808

12.Claudius C, Skovgaard LT, Viby-Mogensen J: Is the performance of acceleromyography improved with preload and normalization? A comparison with mechanomyography. Anesthesiology 2009; 110:1261-70

13.olofsen E, Dahan A, Borsboom G, Drummond G: Improvements in the application and reporting of advanced Bland-Altman methods of comparison. J Clin Monit Comput 2015; 29:127-39

14.Marshall VC, Marshall RD: Movements of the thumb in relation to peripheral nerve injuries. Postgrad Med J 1963; 39:518-25

15.Colegrave N, Billard V, Motamed C, Bourgain JL: Comparison of the TOF-Scan™ acceleromyograph to TOF-Watch SX™: Influence of calibration. Anaesth Crit Care Pain Med 2016; 35:223-7

16.Itagaki T, Tai K, Katsumata N, Suzuki H: Comparison between a new acceleration transducer and a conventional force transducer in the evaluation of twitch responses. Acta Anaesthesiol Scand 1988; 32:347-9

17.Ueda N, Muteki T, Poulsen A, L-Espensen J: Clinical assessment of a new neuromuscular transmission monitoring system (ACCELOGRAPH): A comparison with the conventional method. J Anesth 1989; 3:90-3

18.Werner MU, Kirkegaard Nielsen H, May o, Djernes M: Assessment of neuromuscular transmission by the evoked acceleration response. An evaluation of the accuracy of the acceleration transducer in comparison with a force displacement transducer. Acta Anaesthesiol Scand 1988; 32:395-400

19.Kirkegaard-Nielsen H, Helbo-Hansen HS, Lindholm P, Pedersen HS, Severinsen IK, Schmidt MB: New equipment for neuromuscular transmission monitoring: A comparison of the ToF-Guard with the Myograph 2000. J Clin Monit Comput 1998; 14:19-27

20.Capron F, Alla F, Hottier C, Meistelman C, Fuchs-Buder T: Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train- of-four ratio of 0.9. Anesthesiology 2004; 100:1119-24

21.Harper NJ, Martlew R, Strang T, Wallace M: Monitoring neuromuscular block by acceleromyography: Comparison of the Mini-Accelograph with the Myograph 2000. Br J Anaesth 1994; 72:411-4

22.Kopman AF: Normalization of the acceleromyographic train- of-four fade ratio. Acta Anaesthesiol Scand 2005; 49:1575-6

23.Dubois PE, Gourdin M, Russell K, Jamart J: Installation of the hand influences acceleromyography measurement. A comparison with mechanomyography during neuromuscular recovery. Acta Anaesthesiol Belg 2005; 56:163-6

24.Suzuki T, Fukano N, Kitajima o, Saeki S, ogawa S: Normalization of acceleromyographic train-of-four ratio by baseline value for detecting residual neuromuscular block. Br J Anaesth 2006; 96:44-7

25.Kopman AF, Klewicka MM, Neuman GG: The relationship between acceleromyographic train-of-four fade and single twitch depression. Anesthesiology 2002; 96:583-7

26.Helbo-Hansen HS, Bang U, Nielsen HK, Skovgaard LT: The accuracy of train-of-four monitoring at varying stimulating currents. Anesthesiology 1992; 76:199-203

27.Brull SJ, Ehrenwerth J, Silverman DG: Stimulation with sub- maximal current for train-of-four monitoring. Anesthesiology 1990; 72:629-32

28.Schreiber JU, Mucha E, Fuchs-Buder T: Acceleromyography to assess neuromuscular recovery: Is calibration before measurement mandatory? Acta Anaesthesiol Scand 2011; 55:328-31

29.Kelly D, Brull SJ: Monitoring of neuromuscular function in the clinical setting. Yale J Biol Med 1993; 66:473-89

30.Claudius C, Skovgaard LT, Viby-Mogensen J: Arm-to-arm variation when evaluating neuromuscular block: An analysis of the precision and the bias and agreement between arms when using mechanomyography or acceleromyography. Br J Anaesth 2010; 105:310-7

31.Brull SJ, Kopman AF: Current status of neuromuscular reversal and monitoring: Challenges and opportunities. Anesthesiology 2017; 126:173-90

编辑:沈燕君  审核:赵巍

请勿随意转发或转载。文中相关内容不能以任何方式取代专业的医疗指导,也不应被视为治疗建议。医学专业人士对文中提到的任何药品进行处方时,请严格遵循该药品在中国批准使用的说明书。默沙东不承担相应的有关责任。

您的同行也在看:
麻醉领域学术前沿
相关产品